

Accurate cavity-enhanced spectroscopy of molecules with coherent light

Adam J. Fleisher | CES Summer School | Lecco, Italy | 14 June 2022

National Institute of Standards and Technology (NIST)

Gaithersburg, MD: ~32 km northwest of Washington, DC

ATMOSPHERIC TRANSMITTANCE: EARTH AND BEYOND

With an accurate model for how light is absorbed by molecules in the Earth's atmosphere, researchers can measure gas column densities globally, over urban areas, wildfires, and regional carbon sources and sinks (e.g., forests, oceans, etc.). Current and future probes and Great Observatories (NASA, ESA, etc.) monitor transmission and emission spectra from planets, moons, stars, exoplanets, and other astronomical bodies to better understand the chemical composition and dynamics of the Solar System and beyond.

"Great observatories: The past and future of panchromatic astrophysics," arXiv:2104.00023 [astro-ph.IM]

OPTICAL MEASUREMENTS GROUP

Accurate cavity-enhanced spectroscopy

Long interaction pathlength (km's in a compact physical footprint)
 Stable frequency axis (relative stability better than 10⁻⁸)
 Spatially coherent (well-defined beam shape / mode volume / mode cross-section)
 High resolution (high quality factor / finesse)

Cavity transmission spectrum

empty cavity with absorber

Lehmann and Romanini, *JCP* **105**, 10263 (1996) Lehmann, Dispersion and Cavity-Ringdown Spectroscopy, in Cavity-Ringodwn Spectroscopy, eds. Bush and Bush (APS, 1999) Cygan et al., *MST* **27**, 045501 (2016) Cygan et al., *Commun. Phys.* **4**, 14 (2021)

Molecular absorption and dispersion

NIST

MATERIAL MEASUREMENT LABORATORY

NIST

MATERIAL MEASUREMENT LABORATORY

Fleisher et al., JPCL 8, 4550 (2017)

CAVITY RING-DOWN SPECTROSCOPY

Cavity decay rate: $\Gamma = 1/\tau$ Losses: $L_{tot} = \frac{1}{c\tau} = \alpha + L_0$

Measure CRDS for many lines on a sample of CO_2 with mole fraction traceable to gravimetric and volumetric samples (NIST GMG)

Compare with *ab initio* or spectroscopic model to yield band intensity

Apply to OCO missions, HITRAN2020

Fleurbaey et al., JQSRT 252, 107104 (2020)

Uncertainty budget: Digitizer

Measure DC voltage linearity Measure synthetic decay signals Optimize fitting algorithm and regime* PHYSICAL REVIEW LETTERS 123, 043001 (2019)

Editors' Suggestion Featured in Physics

Twenty-Five-Fold Reduction in Measurement Uncertainty for a Molecular Line Intensity

Adam J. Fleisher,^{*} Erin M. Adkins, Zachary D. Reed, Hongming Yi, David A. Long, Hélène M. Fleurbaey, and Joseph T. Hodges[†] National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA

*Huang and Lehmann, *JPCA* **117,** 13399 (2013) Fleisher et al., *PRL* **123,** 043001 (2019)

Agreement with an ab initio line list

Result: <0.5% agreement between CRDS and theory.

Limitations for CO₂: sampling, line profile + constraints

Uniform distribution $u_r = (6.6 \times 10^{-3})/\sqrt{(3)} = 3.8 \times 10^{-3}$

Long et al., *GRL* **47**, e2019GL086344 (2019) Wübbeler et al., *JCP* **135**, 204304 (2011) Fleurbaey et al., *JQSRT* **252**, 107104 (2020) Fleisher, Yi et al., *Nat. Phys.* **17**, 889 (2021)

NIST

MATERIAL MEASUREMENT LABORATORY

CAVITY-ENHANCED SPECTROSCOPY

Dual-comb interferogram

Coherent averaging

Fourier transform

Cavity transmission intensity spectrum as sampled by an electro-optic comb

Coddington et al., *Optica* **3**, 414 (2016) Long et al, *Opt Lett.* **39**, 2688 (2014) Fleisher et al., *Opt. Express* **24**, 10424 (2016) Fleisher et al., *J. Mol. Spectrosc.* **352**, 26 (2018)

CAVITY-ENHANCED SPECTROSCOPY

Model the complex-valued cavity transmission electric field with a local oscillator EO comb for DCS

Includes molecular dispersion and absorption, mirror dispersion, etc.

Changing the PDH lock point changes the observed cavity transmission electric field and EO-DC spectrum

The transmission spectrum still requires normalization by the probe comb power spectrum

Foltynowicz et al., *APB* **110**, 163 (2013) Fleisher et al., *J. Mol. Spectrosc.* **352**, 26 (2018)

Optically flat, broader band EO combs

MATERIAL MEASUREMENT LABORATORY

PHYSICAL REVIEW A, VOLUME 61, 061802(R)

Cavity ringdown heterodyne spectroscopy: High sensitivity with microwatt light power

Jun Ye^{*} and John L. Hall JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440 (Received 11 January 2000; published 17 May 2000)

Quantum-noise-limited sensitivity in the near-IR with NEA = 6×10^{-14} cm⁻¹ Hz^{-1/2}

BUILD-UP AND RING-DOWN HYBRID:

HETERODYNE-DETECTED CRDS

Ye and Hall, *PRA* **61**, 061802(R) (2000) Long et al., *APB* **115**, 149 (2014)

NIST

MATERIAL MEASUREMENT LABORATORY

CAVITY BUILD-UP SPECTROSCOPY

Frequency-locked CW-laser

Electro-optic modulator to generate sideband and act as a fast optical switch

Probe a cavity mode with a detuned sideband

Measure cavity build-up, model, fit

Retrieve complex-valued molecular absorption spectrum

Truong et al., *Nat. Photon.* **7**, 532 (2013) Cygan et al., *Commun. Phys.* **4**, 14 (2021) Lisak et al., *Sci. Rep.* **12**, 2377 (2022) Fleisher et al., US Patent No. 11209314B2.

CAVITY BUILD-UP SPECTROSCOPY

Analytical model for performance

Now, heterodyne-detected CRDS can be seen as a special case of CBUS where $v_{\rm L}$ = $v_{\rm q}$

Detuning from the cavity FSR—which occurs naturally near resonant absorption—can be readily modeled

Move CRDS to higher frequencies

Cygan et al., *Commun. Phys.* **4**, 14 (2021) Fleisher et al., US Patent No. 11209314B2

Transient behavior

Springer Series in Optical Sciences 179

Gianluca Gagliardi Hans-Peter Loock *Editors*

Cavity-Enhanced Spectroscopy and Sensing

D Springer

Romanini et al., Introduction to Cavity Enhanced Absorption Spectroscopy. In *Cavity-Enhanced Spectroscopy and Sensing*, eds. Gagliardi and Loock (Springer 2014)

NIST

Introduction to Cavity Enhanced Absorption Spectroscopy

Fig. 1.3 Transient response of a cavity mode excited by a monochromatic laser wave. The ideal laser is switched on at the origin of time and the output of a lossless ideal cavity is calculated as a function of time for different mismatches between the laser frequency and the resonance. After a transient behavior, revealing damped oscillations with a period proportional to inverse of the frequencies mismatch, a stationary state corresponding to the cavity mode amplitude is attained

31

Linear response of an optical cavity mode

$$\widetilde{E}_{q}(t) = \int \widetilde{G}_{q}(t - t') \widetilde{E}_{p}(t') dt'$$

$$t < 0 \quad \widetilde{E}_{p}(t) = 0$$

$$t \ge 0 \quad \widetilde{E}_{p}(t) = E_{0} e^{i\omega_{p}t}$$

$$\widetilde{E}_{out}(t) = E_0 \frac{T e^{-\alpha L/2}}{t_r R e^{-\alpha L}} \frac{1}{i(\omega_p - \omega_q) + \Gamma_q} \left[e^{i\omega_p t} - e^{i(\omega_q - \Gamma_q)t} \right]$$

Lehmann and Romanini, *JCP* **105**, 10263 (1996) Cygan et al., *Commun. Phys.* **4**, 14 (2021).

CES applications

STABLE AND RADIOACTIVE ISOTOPES, ISOTOPIC COMPOSITION

Tracers in the environment, medicine

Climate Science

Forensics

Archeology

Geophysics

Solar System formation, dynamics

Paleoclimatology

Food webs

VALUE-ASSIGNMENTS FOR ISOTOPIC REFERENCE MATERIALS: VPDB δ^{13} C

Dual-color CRDS instrument to simultaneously probe ${}^{12}C^{16}O_2$ and ${}^{13}C^{16}O_2$ in air

Fleisher, Yi et al., *Nat. Phys.* **17,** 889 (2021)

VALUE-ASSIGNMENTS FOR ISOTOPIC REFERENCE MATERIALS: VPDB δ^{13} C

Instead of having artifacts define scales ...

Can we instead use accurate infrared spectroscopy (and other methods) to value-assign artifacts with traceability to the SI?

Fleisher, Yi et al., *Nat. Phys.* **17**, 889 (2021) Hoffman and Rasmussen, *Anal. Chem.* **94**, 5240 (2022)

What could go wrong with artifacts?

"... there is the considerable <u>Babylonic</u> <u>confusion</u> within the measurement community, which often perpetuates years after [a] new reference sample is introduced or a new zero point is assigned to the isotope delta scale (e.g. VPDB instead of PDB, ..."

> P. D. P. Taylor, P. De Bièvre & S. Valkiers, in *Handbook of Stable Isotope Analytical Techniques*, Volume 1 (Elsevier, Amsterdam, 2004).

ISOTOPIC COMPOSITION: RADIOCARBON DIOXIDE (¹⁴CO₂)

Create the measurement technology to enable honest brokering of emerging carbon markets.

Applications in nuclear forensics, fugitive emissions monitoring, green technologies, and carbon dating.

Fleisher et al. J. Phys. Chem. Lett. 8, 455 (2017);

In *The Future of Atmospheric Boundary Layer Observing, Understanding, and Modeling*. NASEM Workshop, 2018.

Fleisher, *Nat. Phys.* **17,** 1432 (2021)

Home > An easier way to tell fossil fuels from biofuels

Advertisement

Latest News Web Date: October 3, 2017

An easier way to tell fossil fuels from biofuels

Prototype laser absorption spectrometer could make radiocarbon analysis less expensive

By Deirdre Lockwood

measure for measure

Radiocarbon age is just a number

The idea of radiocarbon existing at equilibrium within Earth's atmosphere has established radiocarbon dating. Adam Fleisher takes a look at its beginnings, achievements and limitations.

Once a living thing stops taking up carbon, what remains will act as a radioactive version of one of those beeping clocks from the most dramatic scene in an action movie and begin to tick down. Every clock ticks at its own rate. For radionuclides like ${}^{\rm LC}$, this rate is inversely proportional to the half-life. As recommended by the Decay Data Evaluation Project, an international collaboration of metrologists, the radiocarbon half-life is (5700 \pm 30) years¹. When the half-life and the background radiation levels are known.

Credit: Adam Eastland / Alamy

between ¹⁴C ages and calendar ages are indicative of physics-based changes in Earth's radiocarbon equilibrium. Accurate estimates of these deviations against a modern baseline are therefore valuable.

Libby himself recognized the need to use different measurement approaches to establish half-life accuracy³. Early on, these included solid, liquid and gas decay-counting methods and mass spectrometry atom-counting methods. In the last decade, highly sensitive optical spectroscopy methods have also been

OPTICAL MEASUREMENTS GROUP

Fleisher et al., JPCL 8, 4550 (2017)

Results

Differentiate fossil-fuel CO_2 from biofuel CO_2 with high degree of confidence

686 Vol. 8, No. 5 / May 2021 / Optica

Research Article

optica

Mid-infrared interference coatings with excess optical loss below 10 ppm

G. Winkler, ^{1,*,†} L. W. Perner, ^{1,†} G.-W. Truong, ^{2,3} G. Zhao, ⁴ ⁽⁵⁾ D. Bachmann, ² A. S. Mayer, ¹ J. Fellinger, ¹ D. Follman, ^{2,3} P. Heu, ² C. Deutsch, ² D. M. Bailey, ⁴ ⁽⁵⁾ H. Peelaers, ⁵ S. Puchegger, ⁶ A. J. Fleisher, ⁴ ⁽⁶⁾ G. D. Cole, ^{2,3} ⁽⁶⁾ and O. H. Heckl¹

¹Christian Doppler Laboratory for Mid-IR Spectroscopy and Semiconductor Optics, Faculty Center for Nano Structure Research, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria ²Trostaline Mirror Solutions, Santa Barbara, Co A and Vienna, Austria ³Thorlabs Crystalline Solutions, 114 E Haley SL, Suite G, Santa Barbara, California 93101, USA ³Material Messurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA ³Department of Physics & Astronomy, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, Kansas 66045, USA ⁴Faculty Center for Nano Structure Research, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria ⁴Corresponding author: georg, winkler@univie.ac.at

Received 9 September 2020; revised 18 March 2021; accepted 22 March 2021 (Doc. ID 405938); published 14 May 2021

PHYSICAL REVIEW A 101, 062509 (2020)

Doppler-free two-photon cavity ring-down spectroscopy of a nitrous oxide (N₂O) vibrational overtone transition

Gang Zhao ^{1,*} D. Michelle Bailey ¹ Adam J. Fleisher ^{1,1} Joseph T. Hodges ¹ and Kevin K. Lehmann ² ¹National Institute of Standards and Technology. 100 Bareau Drive, Gaithersburg, Maryland 20899, USA ²Departments of Chemistry and Physics, University of Virginia, Charlottesville, Virginia 22004, USA

(Received 27 March 2020; accepted 14 May 2020; published 4 June 2020)

Letter

absorption

Two-photon

Optics Letters

Frequency stabilization of a quantum cascade laser by weak resonant feedback from a Fabry–Perot cavity

GANG ZHAO,^{1,3} ⁽¹⁾ JIANFEI TIAN,² JOSEPH T. HODGES,¹ AND ADAM J. FLEISHER^{1,*} ⁽¹⁾

¹Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA ¹Institute of Laser Spectroscopy, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan City 030006, Shanxi Province, China

^aCurrent address: Institute of Laser Spectroscopy, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan City 03006, Shanxi Province, China "Corresponding author: adam.fleisher@nist.gov

Received 20 April 2021; revised 18 May 2021; accepted 19 May 2021; posted 20 May 2021 (Doc. ID 427083); published 21 June 2021

NEW MIRROR TECHNOLOGY, NEW SPECTROSCOPIC METHODS

The same crystalline interference coatings designed for LIGO are now used in our laser instruments. New spectroscopic methods are more sensitive, more selective, and background free – enabling new molecular and isotopic sensing opportunities.

MATERIAL MEASUREMENT LABORATORY

Thorlabs

OPTICAL MEASUREMENTS GROUP

Accurate cavity-enhanced spectroscopy

Long interaction pathlength (km's in a compact physical footprint) Stable frequency axis (relative stability better than 10⁻⁸) Spatially coherent (well-defined beam shape / mode volume / mode cross-section) High resolution (high quality factor / finesse)

~200 ppm Methanol, 40 Torr

Hélène Fleurbaey Hongming Yi, Michelle Bailey, Erin Adkins

OPTICAL MEASUREMENTS GROUP

Accurate cavity-enhanced spectroscopy

The experiments really look something like this ...

Yi et al., *JQSRT* **206**, 367 (2018) Yi and Fleisher, *JCP* **151**, 234202 (2019)

Postdoc opportunities! Visitors welcome! adam.fleisher@nist.gov

Collaborators

Nicolaus Copernicus University (Lisak, Cygan, Masłowski) University of Vienna (Heckl) Thorlabs (Cole) University of Virginia (Lehmann) Laval University (Genest) NIST PML (Plusquellic, Gillis, Douglass, Diddams) University College London (Tennyson, Polyansky) Harvard Center for Astrophysics (Gordon) JPL, Caltech (Drouin, Okumura) JILA, NIST and CU-Boulder (Ye) University of Maryland (Dodson) INP-Greifswald (van Helden) NIST Optical Measurements Group Joseph T. Hodges, Group Leader Erin Adkins D. Michelle Bailey Hélène Fleurbaey (CNRS, Univ. Grenoble Alpes) Mélanie Ghysels (CNRS, Univ. Reims) Philippe Guay (Univ. Laval) David Long Qingnan (Philip) Liu Zachary Reed Hongming Yi (Princeton Univ.) Gang Zhao (Shanxi Univ.)

NIST Greenhouse Gas and Climate Science Program NASA OCO Missions, APRA (Laboratory Astrophysics)

