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Atmospheric Science and Spectroscopy

. Numeroug very high sensitivity analytical methods in Light Length or Setect
atmospheric science .... Mass spectrometry, fluorescence Source Column etector

luminescence, chromatography, etc. | / |
. —<
« Major advantage to spectroscopic methods (at least via Beer- » »@
\ >
€< L

Lambert extinction) is that they are absolute

» But ... generally insensitive compared to other methods

Cavity Enhanced Spectroscopy

\ Optical Cavity
(Light Source(} = (Detector O
< d >

d
L = ——
eff (1-R)

For R=0.9999 (or 1-R=10%)andd=1m

Effective path length is comparable to the depth of the
atmosphere




Scientific Questions in Atmospheric Chemlstry & Compos:tlon
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e.g. PALMS sTOF, Nitric Oxide Laser Induced Fluorescence (NO-LIF), Micro
Doppler Lidar (MICRO DOP), Miniature Sun Photometer

Tropospheric Chemistry Focus on Mass
Spectrometery and Optical Spectroscopy

INSTRUMENT DEVELOPMENT & FIELD CAMPAIGNS

Significant focus on development of
atmospheric measurement technology

Deployment of custom instruments on fixed
and mobile platforms

— Alircraft
Ships
Mobile Lab

© Ground Site



Optical Extinction

Atmospheric Composition () = N (raolec om™) o (em? molec-

o
78.1% Abs. cross section range in the atmosphere
CO, G ~10-2' - 10-7 cm2 molecule-"
% 0.04%
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The remaining 0.03% represents most
of the interesting atmospheric chemistry

Radicals

But ... Optical extinction (o) of
atmospheric trace gases can be very
small

(7]
Q
et
Ig
©
Q
(S
S
Q
et
c




€PM25
Combustion particles, organic
HUMAN HAIR compounds, metals, etc.

50-70pum <2.5um (microns) in diameter
(microns) in diameter

© PM1o
Dust, pollen, mold, etc.
<10 um (microns) in diameter

s

Optical extinction range: 10 - 1
e e

Image courtesy of the U.S. EPA
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CO, NOx, 03
Intermediates
Radicals
Aerosols
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Cavity Enhanced Path Length

« Example @ 662 nm: Reflectivity = 99.999 —
99.9995% (1-R = 5-10 x 10°)
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> 300 us
L > 100 km

» Ring down time constant
Effective path length

©
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« Sensitivity < 10-10 cm! Hz1/2

aRayleigh T A pgie T E Q;

Path Length (km)

600 900 1200

—— Observed Decay
—— Exponential Fit

Per Pass

Losses  Mirror Reflectivity Ray1leég_h 4%(3332””9 l\fhe_ﬁcgétzgrr‘ng
é%?ngn =5 ppm across visible but variable !

Trace gas
absorption

<10 ppm
Variable !



Cavity Enhanced Spectroscopy Techniques

Time Intensity

a = Extinction coefficient
d = Cavity length

1-R(A R = Reflectivity
¢ = Speed of light

* Narrowband laser sources  Laser or broadband source
« Shut off Ig instantaneously « Continuous, Constant Ig
* Integrate dI/dt * Let dI/dt = O (steady state)

Define Io(A), I(A) as cavity with,
without absorbers

S (%)= (l‘R(A)mR@)(

d 1(A)
Absolute measurement of a (1) as Even if scheme exists to separate I(1),
long as scheme exists for lo(2), still must determine 1-R(A)/d and

determining 1, independently of t know og,, - Requires Calibration !



Considerations for a Field Instrument

« Sampling time

} Closely related
* Precision and detection limit

Field

instruments » Method for determining and acquiring zeros (l,)
are about

more than just  Method for calibration or validation

about the

optics !  Materials for sample handling

* Optical stability and mirror cleanliness
* Engineering requirements: Size, weight, and portability

 Automation and ease of use



Detection Limit, Precision and
Time Response
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Cruising speed = 100 m s-1
Spatial resolution @ 1 s =100 m

1 Hz (or sub 1Hz) time
resolution required
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Data commonly reported at 1 min
— 1 hour resolution

Daily / diel profiles often define
the science

Flux b FC
Measurement *‘ﬁs“ [/ =S
fmd g

Dependence of mixing ratio with
vertical wind

Variability on 10 Hz time scale



Mirror Cleanliness and Optical Stability

The atmosphere is a dirty
place !

Severe urban air pollution
Wildfires and agricultural burning

High relative humidity

Approaches

* Purge volumes

Washenfelder ES&T 2011

Measurement platforms
may be harsh
P-3: Four engine turboprop
aircraft that flies hurricanes

Research Vessels: e.g. 8 m
swells in the North Atlantic

Approaches

* |solation

Purge volumes with flows ~1% of sample flow

» Operation at reduced P and / or increased T

* Inlet filtration to remove particulates

» Many optical cavity based instruments are
remarkably robust against shock and vibration

* Actually superior to other alignments ... e.g.
Herriot Cells
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Engineering: Size, Weight, Power, MISSSias = - &
Automation :
All field measurement platforms, but especially aircraft, e
benefit from reductions in size, weight and power 0

NOAA Twin Otter, Inside and
Power consumption costs twice: Outside, 2017
Limitation in power availability V' 2.9
Dissipation of heat load R Y

CES instruments actually have an inherent benefit in this
regard due to:

Miniature opto-electronics components
Not just small, but also low power
Reduced requirements for vacuum

Automation: You don'’t always get to fly with your
instrument!

Example: NASA ER2 & WB57, single pilot, high altitude




Example 1: Nitrogen Oxide and Ozone Cycles

Free Troposphere

Free Troposphere
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Photochemical 03, rapld NO, & VOC oxidation

O5; consumption, dark NO OX|dat|on radical

reservoirs, stratification



Nitrate Radical (NO3;) Atmospheric Spectroscopy

(b)

Chen et al., Atmos

Passive — Chem Phys (2011)
e.g., lunar
light

e ORDER SORTING
SOUrce | J 1 ‘ c::):usmc
Active — Xe Spectrograph 10 km Lamp
Arc Lamp or (O @
LED on éii N
long path o g o

Platt, U., et al., Geophys. Res. Lett., 1980.
Noxon, J. F., et. al., 1980.

Differential Optical Absorption
Spectroscopy (DOAS)

differential spectrum
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NO; Cavity Ring-Down Spectroscopy

finite bandwidth

—  — Optical Cavity
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Fix laser at 662 nm

Modulate NO; via: NO; + NO — 2NO,

Reaction is rapid and specific to NO;

2
O allan NOj3 (pptv)

662 nm absorption + NO titration = highly specific NO3; detection
Sensitivity as good at 0.2 pptv @ 1 Hz

1 1 I T Y T I |
2 3456781

Integration Time (s)




Simultaneous Detection of N,O;
NO,

@*@"@

Exploit thermal equilibrium between
NO5; and N,O5

1.1
1.0
0.9
0.8

0.7 « Measure sum of NO; and N,O¢; N,O: = heated -

06 ambient signal
60 80 100 120 140 160

Preconverter Temperature (°C)

« Thermal conversion of N,Os — NOj in a heated inlet

N,0: 3 NO, + NO,
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102101 10/26/01 - 10/31/01 T 11/5/01
Mountain Standard Time




NO, Measurement at
405 nm

* 405 nm very near the O3z minimum @ 385 nm

50 ppbv O3 = 1 pptv NO,
* No significant H,O or O, (O,-O,) absorption bands

» Glyoxal / Methylglyoxal can present an
interference

200 pptv Glyoxal = 20 pptv NO,

* |0 also potential interference

1 pptv 10 = 15 pptv NO,

Total gas phase optical extinction @
405 nm is a nearly interference-free
measure of NO,
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NO, Cavity Ring Down Spectroscopy

Fuchs, Environ. Sci. & Tech. 2009
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— Data
— Fit 00:00 04:00 08:00 12:00 16:00

— calc. noise
- - white noise
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* 405 nm diode laser modulated at 2 KHz a=2X%X10"1cm1 Hz12
Precision =22 pptv/ 1 Hz / 2¢6
* R(405 nm) ~99.995, L4 ~ 8.5 km 5 pptv / 1 minute / 2o

Accuracy = 3%



Conversion of NO and O; to NO,

Photochemical Nitrogen NO, =NO + NO, INO] (10" cm® )
Oxide Cycle . NO + ,NO, + O,

18 ppmv O5 (O, or air + Hg lamp)
yields > 99% conversionin 0.5 s

O3 conversion to NO, (%)

« Small (<2%) correction for
oxidation of NO, to N,O, small oI
optical extinction due to excess O;

Slope = 0.99

e 03 + —> N02 + 02 %
NO, and O, are conserved : §
o e Same rate, different excess reagent [z
quantities useful for °
definition of photochemical « No extinction from background O3,
nitrogen and ozone cycles but ... NO, background (~ 0.2%) % 50 100 150 200 250

present in the added NO UV Absorption O (ppbv)



Conversion of NO, to NO,

Measurement

1. Convert most NO, — NO, in 650 C
quartz oven

NO, + A(650 ° C) — NO,
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2. Convert NO — NO, in excess O,
(same as NO, channel)

NO + O; (excess) —> NO,

Gas Temperature (°C)

Wild et al., ES&T (2014)
Womack et al., AMT (2017)

Accuracy = 12 %, based on in-field
comparison to other NO, instruments



6-Channel Nitrogen Oxide Cavity Ring-Down Spectrometer

NO, NO,, NO,, O,

Bill Dubé

405 nm: Detect NO, directly
Convert NO, O3 to NO,, via:
NO + O; = NO,
Convert NO, to NO, via:
NOy + heat + O3 = NO,
NO, = total reactive nitrogen
L.O.D. = 20-50 pptv (20, 1Hz), 3-12% Accuracy

662 nm: Detect NO; directly
Convert N,Os to NO3 via:
N205 + heat = NO3 + N02
L.O.D =0.2 - 3 pptv, 10-20% Accuracy

High precision, fast response NO, NO,, NO,, O; NOj, N,O5 with single calibration standard




CAR C-130 Aircraft February 1 — March 15, 2015, United States East Coast

from the U.S. East coast
during winter

Data used to constrain
“(among other results) the

rates and mechanism for

N,Os uptake
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CARIBIC Autonomous Ring-Down Instrument &3
for Nitrogen Oxides (CARDINOQO) \

Four Cavity Ring Down Spectroscopy (CRDS) channels:
662 nm: NO;, N,Os 45 x 50 x 59 cm?3, 55 kg
405 nm: NO,, O,

~

Scientific goals: (2
* In-situ NO5, N,O; in the UT / LS with global coverage -
« Fast response CRDS NO,, O; on CARIBIC " /

. Andreas Zahn

Andy Ruth

WAw  Karlsruhe Institute i v

4
San Francisco |,

of Technology, -

Mexico City

—
e v)g Germany SN

University
College Cork,

) Sio Paulo

Santiago de Chile, s~
£y




Example 2: UV & Visible TS e P R I R

Atmospheric Trace Gases
4x10™"° CCHHgé‘I?IO (Gly) T
) Mmcocm (MeGly) ‘A 1
. [‘ MLMD N\ A ___ﬁ:fvd’dm*"‘u |

* Single wavelength CRDS @ 405 nm shown to
be specific to NO, for urban impacted
environments

» Broadband light sources + optical cavities
(broadband CES) useful for other trace gases

* NO,, Glyoxal, Methylglyoxal
LED @ 455 nm (438 — 468 nm)

Absorption Cross Section (c:m2 molecule'1)
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« NO,, HONO 8x10 T NO, I
LED @ 365 nm (360 — 390 nm) 4+

2 £ <+

Min et al., AMT 2016 0 5 Aerosol Ext. R

102 + 3 g 4

» CH,0, broadband aerosol extinction using e \\M\\\/\Mﬂ — T

laser driven light source 107" - 3 N

ax10? 4 Oa(1atm, x107) HZO (0.5 nm)
Washenfelder AMT 2013, 2016 11
Womack ACP 2021 oL , , i

 Future: 10, BrO, SO, 300 350 400
Wavelength (nm)




The Airborne Cavity Enhanced Spectrometer (ACES)

Optical Cavity @ i c
BN CF &:
7 - 'f" N

s |

AN "\’: 4 | d |
Light Collimati Kyung-Eun Min, Kyle Zarzana,
'g ofiimating Mirror : Rebecca Washenfelder, Carrie
Womack

-
t\——’ —
N

Heat sink
Transition plate |
e Pl
- L)

' f 4 Zf f
¥ e A eI e, e U -h
| —— 365nm (NO,/HONO)  —{{]F ;

Pressure insensitive
mirror mounting system




Glyoxal

2o SCIAMACHY

( CHOCHO) G-

e e \
‘ 00 420 440 460

‘ Global source: Isoprene oxidation, fires Wavelength (nm)

O Regional / Urban source: Aromatic, acetylene oxidation
Both of these
large quantities \_IZO/ 20 340 360 380 400

Oligomerization thought to be an important route to organic aerosol
species are
by fres 4 Lrs S Wavelength (nm)

Nitrous Acid (HONO)
| oH_
emitted in @

Important source of photochemical radicals in polluted environments




Spectral Fitting

(44 . . — O, w— (Y. . Q... .
measured extinction i, zoomed fit,i, zoomed

Fit result CHOCHO

4.35x10'" molec/cm?®

n‘,ﬁN lA‘quJ MM ]

. 10
Polynomial Residual 2.94x10'° moledcm

CH,COCHO

L |
)
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o
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o
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X
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i 3.23x10"7 molec/cm® M 4.11x10°*" molec?cm®

o, 4 L

Ll Y T m ‘ L ol bt ot 2, ol el
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1.08x10"" molec/cm?

440 445 450 455 460 465 440 445 450 455 460 465 440 445 450 455 460 465

Wavelength [nm] Wavelength [nm] Wavelength [nm]

2013: Differential Optical Absorption Spectroscopy Intelligent Systems (DOASIS)

2022: Custom fitting software written in Igor Pro by from Carrie Womack, to be released publicly




Airborne CHOCHO, NO,, HONO

Carrie
Womack

0246 810
CHOCHO (ppbv)

— Glyoxal
= Wl
—— HONO

HONO (ppbv) CHOCHO (ppbv)

— N02

NO, (ppbv)

Lk, I_IJLI.

~ \ —— Altitude / ‘

| | | | | |
10:00 PM 11:00 PM 12:00 AM 1:00 AM 2:00 AM 3:00 AM
84119 yrC

Altiude (km)




Example 3: Aerosol Extinction

Example [%’- —————=]

Aerosol

Distributions

For o, < 1019 cm', detect single particles with d = 0.3 pm

Statistically noisy signal that interferes with trace gas

a bSO rpti O n forcing studies
Greenhouse

Aerosols
Aerosols are a
significant
Gas phase Compresen s g0~ = C(;Jn ribution t6
instruments Sonse L o
) : | global radiative
typically use filters forcing due in part
to eliminate o th gr in t'pn
influence of O thelrextinctio
aerosol extinction : .
/,/fStepper motor and gearbox H Ig h Iy U n Ce rta I n
Aut ted filt h f t i : Q"%QBWQU did
utomated filter changer for autonomous operation i A | g 2
J P IPCC 2021 i g8

Dubé et al., Rev. Sci. Instr. 2006

-



NOAA Aircraft Aerosol Optical Properties (AOP) Instrument

3 wavelength aerosol extinction (CRDS) and absorption (PAS) @ 405, 532 and 660 nm
. Pl: Dan Murphy, Cloud &

8 CRDS AOP channels g*
Aerosol Processes Group

~_ 3 humidified channels
-1 denuded channel to
-# remove volatile species

Y. NO, and O; (which
. absorb at 405 and 532

E in aircraft rack _ 3 ' nm) are removed using
< R " activated charcoal
Sensitivity: 0.1 Mm'=10°cmin 1 second
Method for acquiring zeros: Filtration of air sample
Method for validation: Comparison with scattering instrument Aerosol extinction is
Materials: Metal cells with conductive tubing a strong function of
Engineering: ~1.2 m x 0.05 x 0.05 m; 90 kg; both wavelength and
Fully automated relative humidity due
to particle growth

Langridge et al., Aerosol Sci. Tech. 2011



Broadband Cavity Enhanced Aerosol Spectrometer

Heat sink  F/1.2 4 P31 Band
pass
and TEC lens v rl r] lens filter

v
A o
BBCES (385 — 420 nm) Optical fiber
22.1 mm inner diameter, 100 cm long cavity L

99.994% reflective at 405 nm

Purge flows § 4

4 v
1 [t
BBCES (360 — 390 nm)
22.1 mm inner diameter, 100 cm long cavity 4

99.97% reflective at 365 nm

To CPC
4 r> ¥ v
Turning HWD ﬂwﬂ_ Outical
mirrors . ) ptical fiber
Cavity Ring-Down (407 nm) M PMT

Grating spectrometer
with CCD detector

7.7 mm inner diameter, 93 cm long cavity Bandpass
99.994% reflective at 407 nm filter

Optical
isolator

CW Diode Laser
407-nm

LED light sources, grating spectrometer CCD, two broadband and one single wavelength channel

Washenfelder et al., Atmos. Chem. Phys, 2013




Aerosol Extinction, Relative Humidity & Composition
OA Mass

Total Mass

Relative humidity dependence of extinction F(RH) depends on aerosol organic content, Fg, =

o] @7 %
. :F-:,;y; ’

Sipsey Wilderness |
IMPROVE Site -

[ J
SOAS/SEARCH Site

Latitude (deg)

-88 -86 -84
Longitude (deg)

B Organics © Ammonium
B Sulfate W Nitrate

Southeast U.S., Summer 2013 (this work)
= [t to 2013 measurements
A Extrapolation of yex from SEARCH data

9 11131517 1921 23252729 1 3 5 7 9 11 13 15
June July

1990 — 2018 emissions reductions in aerosol precursors: SO, 90%, NO, 60% Attwood et al., Geophys.
Reduction in both aerosol mass and F(RH) leads to strong trends in extinction Res. Lett. 2014




Example 4: Fire Research and Instrument Comparisons

NOAA Twin Otter:
Western wildfires,
emissions,
photochemistry and
nighttime chemistry

NASA DC-8: Western wildfires and
eastern agricultural fires, focus on
emissions and photochemistry

16 flight
Eastern Ag Fires days
Aug 19 —Sep 5, 2019
8 research flights 39
' research
flights

Western Wildfires A i
Jul 22 — Aug 17, 2019 g \’ 10 fires or

14 flights, 14 fire complexes |, complexes

Carbon Monoxide (CO) from commercial ICOS (LGR, NASA DC-8) and
CRDS (Picarro, NOAA Twin Otter) Instruments




DC-8 Aircraft Instruments

: Chemical lonization Airborne Cavity
o Laser Induced
Chemiluminescence (CL) Fluorescence (LIF) Mass Spectrometer Enhanced
(CIMS) Spectrometer (ACES)

Measure NO directly NOAA NO LIF >300 masses with high 455 nm: NO,,
instrument shown sensitivity CHOCHO, CH;CHO

NO,, NO,, O, via inlet
conversions (e.g., NO, + Not shown: NO, LIF Calibration challenging! 365 nm: HONO (NO,)
hv — NO @390 nm LED) instrument (NASA) Few masses quantified



Instrument Comparisons to Broadband CES

Two passes of a large wildfire plume, Williams Flats, August 2019

Redundancy in
measurements essential to
assess accuracy

Bourgeois et al., Atmos. Chem. Phys. Discuss (2022)

NO (ppbv)

NO,: Chemiluminescence
(CL) with photolytic
conversion of NO, — NO
has been a standard

NO; (ppbv)

£
S
o]
=4
o]
I

* Both CES (direct,
absolute) and LIF
(direct, calibrated) are
lower but agree with
each other

NO, (ppbv)

HONO: CIMS is high
precision but CES more
accurate

ToF CIMS = Time of Flight Chemical lonization Mass Spectrometry; LIF = Laser Induced Fluorescence



Instrument
Comparisons
to ACES

1 Hz data, linear scale,
all flights

N = 226,000 — 310,000 !

1 Hz data, log scale,
categorized by wildfires,
agricultural fires, and
urban flights

Integrals for transects of
wildfire plumes

Bourgeois et al., Atmos. Meas.

Tech. Discuss. 2022
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NO2¢es (ppbv sec)

,NO: ACES vs CL

Slope = 0.90 + 0.01
Intercept = -0.026 £+ 0.003

N = 226160 R° =097
o =

50 100 150 200

d)

| Slope = 0.91

S\(,;:‘.: = (.87

Slope = 1.09

Wildfires
Eastem fires
LA basin

|

100

Slope = 0.90 = 0.00

R =1.00
Intercept = 4.18 = 1.91
N =288

I ; I ‘ |

2000 4000 6000
NO2¢, (ppbv sec)

NO2¢gs (ppbv)

NO2¢gs (ppbv sec)

9 NO,: ACES vs LIF

Slope = 1.03 = 0.01
Intercept = -0.104 = 0.025

N =227231 R =098

50 100 150 200

Slope = 1.00
Slope = 1.13

Slope = 1.06
L]

Slope = 1.00 + 0.00

R =1.00
Intercept = 6.03 + 2.06
N =320

I ¥ T ! 1

2000 4000 6000
NO2, ¢ (ppbv sec)

HONO¢s (ppbv)

HONO¢gs (ppbv sec)

0.01 e

» HONO: ACES
vs CIMS

+ Slope = 1.80 + 1.33
* Intercept = -0.119 * 1.091

2
N =310017 R =0.77
I T ! 1

20 40 60 80
HONO¢s (ppbv)

.
.

.
.
% 141
E

0*. >
® Wildfires

0.01 0.1 1
HONO¢ s (ppbv)

079 | 34-80%

Slope = 1.34 + 0.01

R =0.96

Intercept = 11.63 + 3.05
N =391

N —
1000 2000 3000
HONO¢ s (ppbv sec)
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CIMS HONO Calibration

® HCl B HONO
® H,0 ¢ N,O.
A Br, v CINO,

300 310 320
IMR Temp (K)

Robinson et al., Atmos. Meas. Tech. Discuss. 2022

Recent work from our group shows the
variability in sensitivity of CIMS
instruments — factor of 4 over25C T
range

Flight to flight differences in HONO
calibrations and overall difference
between CES and CIMS attributable to
T dependent calibration

ACES (600 pptv) is a lower
precision instrument than CIMS (2
pptv) but in this case a more
accurate one
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“ROMMA: 2023

Atmospheric Emissions and Reactions

O Tier1
O Tier 2

A O Tier 3&4

1

X

Observed from Megacities to Marine Areas

012345%5
Seawater DMS (nM)

CES instruments from this talk: ACES, NO; &
NO, CRDS, Aerosol Optical Properties,
Commercial CO and Greenhouse Gases




Appllcatlons

ompact, low power designs Trace gas measurements relevant to
* Robust in harsh environments air quality and climate
* Aerosol extinction — visibility and
| Dlsadvant ges . climate
| - Low sensitivity relative to « Standard for greenhouse gases
fluorescence, mass spectrometry .

.oscopy Summer School, Lecco lItaly, June 2022



